Signal Transduction Therapies for Treatment of Chronic Leukemias

Authors

  • Burçin Tezcanli Kaymaz Ege University School of Medicine, Medical Biology Department, Bornova, Izmir, Turkey

DOI:

https://doi.org/10.15379/2408-9877.2014.01.01.5

Keywords:

Chronic lymphocytic leukemia, Chronic myeloid leukemia, Signal transduction pathways, Treatment

Abstract

The term signal transduction includes the interaction of external signals that are driven by hormones, growth factors, chemokines, cytokines and small molecules such as ATP in order to receive a cellular response. These responses in turn effect gene transcription and translation, cell division, survival and death upon many signaling networks related with malignancies. Since almost all diseases exhibit dysfunctional aspects of the signaling pathways, drug discovery studies in means of signal transduction therapies have an accelerating importance including chronic leukemias.

Among chronic leukemias, chronic lymphocytic leukemia (CLL) and chronic myeloid leukemia (CML) are being investigated extensively for abnormalities of cellular signaling pathways. This review focuses on targeting B-cell antigen receptor (BCR) signaling and Wnt/?-Catenin/LEF-1 signaling pathways and their inhibitors that provided new opportunities for development of more effective therapies for CLL. Besides this, signaling network systems such as RAS/RAF/MAPK and JAK/STAT will be discussed that contribute high oncogenic activity of BCR-ABL1 oncoprotein in CML. Finally the molecular targets in treatment duration with clinical insights will be discussed.

References

National Cancer Institute. SEER stat fact sheets: chronic lymphocytic leukemia. Available from: http: //seer.cancer.gov/statfacts/html/clyl.html. Accessed May 15, 2013.

Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N. Engl. J. Med. 2005; 352: 804-15.

Hamblin TJ, Orchard JA, Ibbotson RE, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002; 99: 1023-29.

Calin GA, Dumitru CD, Shimizu M et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002; 99(24): 15524-29.

Zenz T, Mertens D, Kuppers R, Dohner H, Stilgenbauer S. From pathogenesis to treatment of chronic lymphocytic leukaemia. Nat Rev Cancer. 2010; 10(1): 37-50.

Rossi D, Rasi S, Spina V, et al. Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia. Blood. 2013; 121(8): 1403-12.

Robak T, Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs. 2012; 21: 921-47.

Puente XS, Pinyol M, Quesada V, et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature. 2011; 475(7354): 101-05.

Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999; 94: 1840-47.

Malavasi F, Deaglio S, Damle R, Cutrona G, Ferrarini M, Chiorazzi N. CD38 and chronic lymphocytic leukemia: a decade later, Blood. 2011; 118(13): 3470-8.

Zucchetto A, Bomben R, Dal Bo M, et al. CD49d in B-cell chronic lymphocytic leukemia: correlated expression with CD38 and prognostic relevance. Leukemia. 2006; 20: 523-25.

Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N. Engl. J. Med. 2003; 348: 1764-75.

Burger JA, Ghia P, Rosenwald A, Caligaris-Cappio F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood. 2009; 114(16): 3367-75.

Deaglio S, Malavasi F. Chronic lymphocytic leukemia microenvironment: shifting the balance from apoptosis to proliferation. Haematologica. 2009; 94: 752-56.

Hehlmann R, Hochhaus A, Baccarani M. on behalf of the European LeukemiaNet. Chronic myeloid leukemia. Lancet.2007; 370: 342-50.

Baccarani M, Saglio G, Goldman J, et al. Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood.2006; 108: 1809-20.

Talpaz M, Hehlmann R, Quintas-Cardama A, et al. Re-emergence of interferon-? in the treatment of chronic myeloid leukemia. Leukemia.2013; 27: 803-12.

Deininger MW. Milestones and monitoring in patients with CML treated with imatinib. Education Program Book 419-426. 50th ASH Conference 2008.

Baccarani M, Deininger M, Rosti A, et al. European LeukemiaNet 2013 recommendations for the management of chronic myeloid leukemia. Blood.2013; 122: 885-92.

Larson RA, Hochhaus A, Hughes TP, et al. Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia.2012; 26: 2197-203.

Kantarjian HM, Shah NP, Cortes JE, et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood.2012; 119: 1123-32.

Cortes JE, Kim DW, Kantarjian HM, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012; 30: 3486-92.

Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med.2013; 369(19): 1783-96.

Mahon FX, Rea D, Guilhot J, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010; 11: 1029-35.

Okimoto RA, Van Etten RA. Navigating the road toward optimal initial therapy for chronic myeloid leukemia. Curr Opin Hematol.2011; 18: 89-97.

Efremov DG, Wiestner A, Laurenti L. Novel agents and emerging strategies for targeting the B-cell receptor pathway in CLL. Mediterr J Hematol Infect Dis. 2012; 4(1): e2012067.

Wesam A, Van Etten RA. Signal Transduction in the Chronic Leukemias: Implications for Targeted Therapies. Curr Hematol Malig Rep. 2013; 8: 71-80.

Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G. B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2011; 118(16): 4313-20.

Veldurthy A, Patz M, Hagist S, et al. The kinase inhibitor dasatinib induces apoptosis in chronic lymphocytic leukemia cells in vitro with preference for a subgroup of patients with unmutated IgVH genes. Blood. 2008; 112(4): 1443-52.

Song Z, Lu P, Furman RR, et al. Activities of SYK and PLCgamma2 predict apoptotic response of CLL cells to SRC tyrosine kinase inhibitor dasatinib. Clin Cancer Res. 2010; 16(2): 587-99.

Amrein PC, Attar EC, Takvorian T, et al. Phase II study of dasatinib in relapsed or refractory chronic lymphocytic leukemia. Clin Cancer Res. 2011; 17(9): 2977-86.

Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol. 2010; 10(6): 387-402.

Gobessi S, Laurenti L, Longo PG, et al. Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia. 2009; 23(4): 686-97.

Baudot AD, Jeandel PY, Mouska X, et al. The tyrosine kinase Syk regulates the survival of chronic lymphocytic leukemias B cells through PKCdelta and proteasome-dependent regulation of Mcl-1 expression. Oncogene. 2009; 28(37): 3261-73.

Quiroga MP, Balakrishnan K, Kurtova AV, et al. B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood. 2009; 114(5): 1029-37.

Friedberg JW, Sharman J, Sweetenham J, et al. Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood. 2010; 115(13): 2578-85.

Hoellenriegel J, Coffey GP, Sinha U, et al. Selective, novel spleen tyrosine kinase (Syk) inhibitors suppress chronic lymphocytic leukemia B-cell activation and migration. Leukemia. 2012; 26(7): 1576-83.

So L, Fruman DA. PI3K signalling in B- and T-lymphocytes: new developments and therapeutic advances. Biochem J. 2012; 442(3): 465-81.

Ringshausen I, Schneller F, Bogner C, et al. Constitutively activated phosphatidylinositol-3 kinase (PI-3K) is involved in the defect of apoptosis in B-CLL: association with protein kinase Cdelta. Blood. 2002; 100: 3741-48.

Hoellenriegel J, Meadows SA, Sivina M, et al. The phosphoinositide 3’-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood. 2011; 118(13): 3603-12.

Furman RR, Byrd JC, Brown JR, et al. CAL-101, An Isoform-Selective Inhibitor of Phosphatidylinositol 3-Kinase P110{delta}, Demonstrates Clinical Activity and Pharmacodynamic Effects In Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia. Blood (ASH Annual Meeting Abstracts). 2010; 116: 55.

Coutre SE, Byrd JC, Furman RR, et al. Phase I study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110d, in patients with previously treated chronic lymphocytic leukemia [abstract]. J Clin Oncol. 2011; 29(Suppl): Abstract 6631.

Bodo J, Zhao X, Sharma A. The phosphatidylinositol 3-kinases (PI3K) inhibitor GS-1101 synergistically potentiates histone deacetylase inhibitor-induced proliferation inhibition and apoptosis through the inactivation of PI3K and extracellular signal-regulated kinase pathways. Br J Haematol. 2013; 163(1): 72-80.

Zhuang J, Hawkins SF, Glenn MA, et al. Akt is activated in chronic lymphocytic leukemia cells and delivers a pro-survival signal: the therapeutic potential of Akt inhibition. Haematologica. 2010; 95: 110-18.

Hofbauer SW, Pinon JD, Brachtl G, et al. Modifying akt signaling in B-cell chronic lymphocytic leukemia cells. Cancer Res. 2010; 70: 7336-44.

Friedman DR, Lanasa MC, Davis PH, et al. Perifosine treatment in chronic lymphocytic leukemia: results of a phase II clinical trial and in vitro studies. Leuk Lymphoma.2013; (doi: 10.3109/10428194.2013.824080)

Giles FJ, Albitar M. Mammalian target of rapamycin as a therapeutic target in leukemia. Curr, Mol Med. 2005; 5(7): 653-61.

Decker T, Hipp S, Ringshausen I, et al. Rapamycin induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood. 2003; 101(1): 278-85.

Abou-Nassar K, Brown JR. Novel agents for the treatment of chronic lymphocytic leukemia. Clin Adv Hematol Oncol. 2011; 8: 886-95.

Huang S, Shu L, Dilling MB, et al. Sustained activation of the JNK cascade and rapamycin-induced apoptosis are suppressed by p53/p21 (Cip1). Mol Cell. 2003; 11(6): 1491-501.

Zanesi N, Aqeilan R, Drusco A, et al. Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer Res. 2006; 66(2): 915-20.

Yee KW, Zeng Z, Konopleva M, et al. Phase I/II study of the mammalian target of rapamycin inhibitor everolimus (RAD001) in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res. 2006; 12(17): 5165-73.

Decker T, Sandherr M, Goetze K, Oelsner M, Ringshausen I, Peschel C. A pilot trial of the mTOR (mammalian target of rapamycin) inhibitor RAD001 in patients with advanced B-CLL. Ann Hematol. 2009; 88(3): 221-7.

Zent CS, LaPlant BR, Johnston PB, Call TG, Habermann TM, Micallef IN, Witzig TE. The treatment of recurrent/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL) with everolimus results in clinical responses and mobilization of CLL cells into the circulation. Cancer. 2010; 116(9): 2201-7.

Niemann CU, Jones J, Wiestner A. Towards targeted therapy of chronic lymphocytic leukemia. Adv Exp Med Biol. 2013; 792: 259-91.

Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993; 72: 279-90.

Rawlings DJ, Scharenberg AM, Park H, et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science. 1996; 271: 822-5.

Balakrishnan K, Gandhi V. Protein kinases: emerging therapeutic targets in chronic lymphocytic leukemia. Expert Opin Investig Drugs. 2012; 21(4): 409-23

Herman SE, Gordon AL, Hertlein E, et al. Bruton’s tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011; 117: 6287-96.

O'Brien SM, Barrientos JC, Flinn IW, et al. Combination of the Bruton's tyrosine kinase (BTK) inhibitor PCI-32765 with bendamustine (B)/rituximab (R) (BR) in patients (pts) with relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL): Interim results of a phase Ib/II study. J Clin Oncol. 2012; (suppl; abstr 6515)

Jaglowski SM, Jones JA, Flynn JM, et al. A phase Ib/II study evaluating activity and tolerability of BTK inhibitor PCI-32765 and ofatumumab in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and related diseases. J Clin Oncol. 2012; (suppl; abstr 6508).

Evans E, Aslanian S, Karp R, et al. Bruton’s Tyrosine Kinase from Bench to Bedside: Covalently Silencing B Cells with AVL-292. 16th Congress of the European Hematology Association. 2011

Brown JR, Sharman JP, Harb WA, et al. Phase Ib trial of AVL-292, a covalent inhibitor of Bruton's tyrosine kinase (Btk), in chronic lymphocytic leukemia (CLL) and B-non-Hodgkin lymphoma (B-NHL). J Clin Oncol. 2012; (suppl; abstr 8032).

Robak T, Robak E. Tyrosine kinase inhibitors as potential drugs for B-cell lymphoid malignancies and autoimmune disorders. Expert Opin Investig Drugs. 2012; 21(7): 921-47.

Kuhl, M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway - a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000; 16: 279-83.

Wang HY, Malbon CC. Wnt signaling, Ca2+, and cyclic GMP: Visualizing frizzled functions. Science. 2003; 300: 1529-30.

Okamura RM, Sigvardsson M, Galceran J, Verbeek S, Clevers H, Grosschedl R. Redundant regulation of T cell differentiation and TCR alpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity. 1998; 8: 11-20.

Reya T, O'Riordan M, Okamura R, et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity. 2000; 13: 15-24.

Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003; 423: 409-14.

Hsu SC, Galceran J, Grosschedl R. Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol. Cell. Biol. 1998; 18: 4807-18.

Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004; 303: 1483-87.

Polakis P. Wnt signaling and cancer. Genes Dev. 2000; 14: 1837-51.

Fukuda T, Chen L, Endo T et al. Antisera induced by infusions of autologous Ad-CD154-leukemia B cells identify ROR1 as an oncofetal, antigen and receptor for Wnt5a. Proc. Natl. Acad. Sci. USA. 2008; 105: 3047-52.

Lu D, Zhao Y, Tawatao R, et al. Activation of the Wnt signaling pathway in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA. 2004; 101: 3118-23.

Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006; 127: 469-80.

Kimelman D, Xu W. Beta-Catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006; 25: 7482-91.

Travis A, Amsterdam A, Belanger C, Grosschedl R. Lef-1, A Gene Encoding A Lymphoid-Specific with Protein, An Hmg Domain, Regulates T-Cell Receptor-Alpha Enhancer Function. Genes Dev. 1991; 5: 880-94.

Bafico A, Gazit A, Pramila T, Finch PW, Yaniv A, Aaronson SA. Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling. J. Biol. Chem. 1999; 274: 16180-87.

Kawano Y, Kypta R. Secreted antagonists of the Wnt signaling pathway. J. Cell Science. 2003: 116: 2627-34.

Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004; 303: 1483-87.

Melki JR, Vincent PC, Brown RD, Clark SJ. Hypermethylation of E-cadherin in leukemia. Blood. 2000; 95: 3208-13.

ClausR , Almstedt M, Lubbert M. Epigenetic treatment of hematopoietic malignancies: In vivo targets of demethylating agents. Semin. Oncol. 2005; 32: 511-20.

Issa JP, Byrd JC. Decitabine in chronic leukemias. Semin. Hematol. 2009; 42: 43-49.

Lucas DM, Alinari L, West DA. The novel deacetylase inhibitor AR-42 demonstrates pre-clinical activity in B-cell malignancies in vitro and in vivo. PLoS One. 2010; 5(6): e10941.

doi: 10.1371/journal.pone.0010941.

Twentyman PR, Lambert E, Muller M, Rees JKH. Selective toxicity of ethacrynic-acid towards lymphocytes of chronic lymphocytic-leukemia In vitro. Leukemia. 1992; 6: 726-28.

Jin GY, Lu D S, Yao SY et al. Amide derivatives of ethacrynic acid: Synthesis and evaluation as antagonists of Wnt/beta-catenin signaling and CLL cell survival. Bioorg. Med. Chem. Lett. 2009; 19: 606-09.

Gandhirajan RK, Staib PA, Minke KA. Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induce apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia. 2010; 12: 326-35.

Emami KH, Nguyen C, Ma H, et al. A small molecule inhibitor of betacatenin/cyclic AMP response element-binding protein transcription. Proc. Natl. Acad. Sci. USA. 2004; 101: 12682-88.

Gang EJ, Hsieh YT, Pham J, et al. Small-molecule inhibition of CBP/catenin interactions eliminates drug-resistant clones in acute lymphoblastic leukemia. Oncogene. 2013; doi: 10.1038/onc.2013.169.

Lu DS, Cottam HB, Corr M, Carson DA. Repression of beta-catenin function in malignant cells by nonsteroidal antiinflammatory drugs. Proc. Natl. Acad. Sci. USA. 2005; 102: 18567-71.

Lindhagen E, Nissle S, Leoni L. R-etodolac (SDX-101) and the related indole-pyran analogues SDX-308 and SDX-309 potentiate the antileukemic activity of standard cytotoxic agents in primary chronic lymphocytic leukaemia cells. Cancer Chemother Pharmacol. 2007; 60(4): 545-53.

Cortez D, Kadlec L, Pendergast AM. Structural and signaling requirements for BCR/ABL-mediated transformation and inhibition of apoptosis. Mol Cell Biol. 1995; 15: 5531-41.

Pendergast AM, Quilliam LA, Cripe LD, et al. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell. 1993; 75: 175-85.

Puil L, Liu J, Gish G, et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J. 1994; 13: 764-73.

Senechal K, Halpern J, Sawyers CL. The CRKL adaptor protein transforms fibroblasts and functions in transformation by the BCR-ABL oncogene. J Biol Chem. 1996; 271: 23255-61.

Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000; 96: 3343-56.

Janes MR, Limon JJ, So L, et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nat Med. 2010; 16: 205-13.

Pellicano F, Simara P, Sinclair A, et al. The MEK inhibitor PD184352 enhances BMS-214662-induced apoptosis in CD34+ CML stem/progenitor cells. Leukemia. 2011; 25: 1159-67.

Mancini M, Veljkovic N, Corradi V, et al. 14-3-3 ligand prevents nuclear import of c-ABL protein in chronic myeloid leukemia. Traffic (Copenhagen, Denmark). 2009; 10: 637-47.

Raitano AB, Halpern JR, Hambuch TM, Sawyers CL. The Bcr-Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A. 1995; 92: 11746-50.

Hess P, Pihan G, Sawyers CL, et al. Survival signaling mediated by c-Jun NH(2)-terminal kinase in transformed B lymphoblasts. Nat Genet. 2002; 32: 201-5.

Puissant A, Robert G, Fenouille N, et al. Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res. 2010; 70: 1042-52.

Zhu Jf, Li Zj, Zhang Gs, Meng K. Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3 /AKT signalings. PLoS One. 2011; 6(8): e23720. doi: 10.1371/journal.pone.0023720.

Niu CC, Zhao C, Zhang XL, et al. Wnt5a enhances the response of CML cells to Imatinib Mesylate through JNK activation and ?-catenin inhibition. Leuk Res. 2013; 37(11): 1532-7. doi: 10.1016/j.leukres.2013.07.013.

Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002; 285: 1-24.

Danial NN, Pernis A, Rothman PB. Jak-STAT signaling induced by the v-abl oncogene. Science. 1995; 269: 1875-77.

Chai SK, Nichols GL, Rothman P. Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients. J Immunol. 1997; 159: 4720-28.

De Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L. STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood. 1999; 94: 1108-12.

Levy DE, Gilliland DG. Divergent roles of STAT1 and STAT5 in malignancy as revealed by gene disruptions in mice. Oncogene. 2000; 19(21): 2505-10.

Valentino L, Pierre J. JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol. 2006; 71: 713-21.

Donato NJ, Wu JY, Zhang L, Kantarjian H, Talpaz M. Down-regulation of interleukin-3/granulocyte-macrophage colonystimulating factor receptor beta-chain in BCR-ABL(+) human leukemic cells: association with loss of cytokine-mediated Stat-5 activation and protection from apoptosis after BCR-ABL inhibition. Blood. 2000; 97(9): 2846-53.

Hoelbl A, Schuster C, Kovacic B, et al. Stat5 is indispensable for the maintenance of bcr/abl-positive leukaemia. EMBO Mol Med. 2010; 2: 98-110.

Walz C, Ahmed W, Lazarides K, et al. Essential role for Stat5a/b in myeloproliferative neoplasms induced by BCR-ABL1 and Jak2V617F in mice. Blood. 2012; 119: 3550-60.

Wang X, Zeng J, Shi M, et al. Targeted blockage of signal transducer and activator of transcription 5 signaling pathway with decoy oligodeoxynucleotides suppresses leukemic K562 cell growth. DNA and Cell Biology. 2011; 30: 71-78.

Schindler T, Bornmann W, Pellicena P, Miller WT, Clarkson B, Kuriyan J. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science. 2000; 289(5486): 1938-.42.

Kosova B, Tezcanli B, Ekiz HA, Cakir Z, Selvi N, Dalmizrak A, Kartal M, Gunduz U, Baran Y. Suppression of STAT5A increases chemotherapeutic sensitivity in imatinib-resistant and imatinib-sensitive K562 cells. Leuk Lymphoma. 2010; 51(10): 1895-101.

Kaymaz BT, Selvi N, Gündüz C, Aktan C, Dalm?zrak A, Saydam G, Kosova B. Repression of STAT3, STAT5A, and STAT5B expressions in chronic myelogenous leukemia cell line K-562 with unmodified or chemically modified siRNAs and induction of apoptosis. Ann Hematol. 2013; 92(2): 151-62.

Kaymaz BT, Selvi N, Gokbulut AA, Aktan C, Gündüz C, Saydam G, Sahin F, Cetinta? VB, Baran Y, Kosova B. Suppression of STAT5A and STAT5B chronic myeloid leukemia cells via siRNA and antisense-oligonucleotide applications with the induction of apoptosis. Am J Blood Res. 2013; 3(1): 58-70.

Mow BM, Chandra J, Svingen PA, et al. Effects of the Bcr/abl kinase inhibitors STI571 and adaphostin (NSC 680410) on chronic myelogenous leukemia cells in vitro. Blood. 2002; 99(2): 664-71.

Retnakumari AP, Hanumanthu PL, Malarvizhi GL, et al. Rationally designed aberrant kinase-targeted endogenous protein nanomedicine against oncogene mutated/amplified refractory chronic myeloid leukemia. Mol Pharm. 2012; 9(11): 3062-78.

Samanta A, Perazzona B, Chakraborty S, et al. Janus kinase 2 regulates Bcr-Abl signaling in chronic myeloid leukemia. Leukemia. 2011; 25(3): 463-72.

Samanta AK, Lin H, Sun T, Kantarjian H, Arlinghaus RB. Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Research. 2006; 66(13): 6468-72.

Samanta AK, Chakraborty SN, Wang Y, et al. Jak2 inhibition deactivates Lyn kinase through the SET-PP2A-SHP1 pathway, causing apoptosis in drug-resistant cells from chronic myelogenous leukemia patients. Oncogene. 2009; 28(14): 1669-81.

Samanta AK, Chakraborty SN, Wang Y, Schlette E, Reddy EP, Arlinghaus RB. Destabilization of Bcr-Abl/Jak2 Network by a Jak2/Abl Kinase Inhibitor ON044580 Overcomes Drug Resistance in Blast Crisis Chronic Myelogenous Leukemia (CML). Genes Cancer. 2010; 1(4): 346-59.

Hantschel O, Warsch W, Eckelhart E, et al. BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia. Nature Chemical Biology. 2012; 8(3): 285-93.

Downloads

Published

2014-08-21

Issue

Section

Articles