A Look under the Hood of the Engineered Human Natural Killer Cells
DOI:
https://doi.org/10.15379/2408-9877.2016.03.01.06Keywords:
Natural killer cells, Engineered NKs, Adoptive transfer, Allogenic, Chimeric receptors.Abstract
Notwithstanding multimodal approaches including chemotherapeutic agents and radiation have been used for decades as major strategies to successfully treat cancer patients; however, the emergence of drug or radiation resistance led to a significant incidence of tumor relapse and hence limits their effectiveness. Therefore, the need for novel and effective strategies which are clinically vital; not only for improved efficacy to eliminate resistant tumor cells but also to permit less-toxic doses and potentially overcome resistance, was and still a hopeful goal. Natural killer (NK) cells comprise 5–10% of peripheral blood lymphocytes (PBLs). Owing to the fact that NK cells have an importance role in anti-tumour immunity as demonstrated by several elegant studies, therefore, this NK-cell activity has been exploited as the basis of cancer immunotherapy strategies. Nevertheless, tumor cells can effectively escape NK cell-mediated apoptosis through a cocktail of different mechanisms. Thus, to enhance NK cell effector function against tumors, different approaches have been recently developed to achieve an ex vivo NK-cell enhancement. One adoptive transfer approach uses expanded allogeneic NK cells, which are MHC class I-resistant. A second approach uses stable allogeneic NK cell lines, which is more practical for large-scale production and safety. A third approach is the genetic modification of NK cells or NK cell lines to highly express cytokines, Fc receptors and/or chimeric tumor-antigen receptors. Therapeutic NK cells can be derived from different sources, including peripheral or cord blood cells, stem cells or induced pluripotent stem cells (iPSCs). Here, we summarize the recent developments in genetic engineering of NK-cell-based biopharmaceuticals, and covering the usefulness, effectiveness, and safety for their clinical applications.
References
Ehrlich P. Über den jetzigen stand der karzinomforschung. Ned Tijdschr Genees 1909; 5: 273-290.
Floor SL, Dumont JE, Maenhaut C, Raspe E. Hallmarks of cancer: Of all cancer cells, all the time? Trends Mol Med 2012; 18: 509-515. http://dx.doi.org/10.1016/j.molmed.2012.06.005
Klein O, Schmidt C, Knights A, Davis ID, Chen W, Cebon J. Melanoma vaccines: Developments over the past 10 years. Expert Rev Vaccines 2011; 10: 853-873. http://dx.doi.org/10.1586/erv.11.74
Boudreau JE, Bonehill A, Thielemans K, Wan Y. Engineering dendritic cells to enhance cancer immunotherapy. Mol Ther 2011; 19: 841-853. http://dx.doi.org/10.1038/mt.2011.57
Vivancos P, Granena A, Jr., Sarra J, Granena A. Treatment with interleukin-2 (il-2) and interferon (ifn(alpha 2b)) after autologous bone marrow or peripheral blood stem cell transplantation in onco-hematological malignancies with a high risk of relapse. Bone Marrow Transplant 1999; 23: 169-172. http://dx.doi.org/10.1038/sj.bmt.1701532
Fillon M. Promising immunotherapy technique. J Natl Cancer Inst 2012; 104: 1528-1529. http://dx.doi.org/10.1093/jnci/djs449
Meier T, Uhlik M, Chintharlapalli S, Dowless M, Van Horn R, Stewart J, et al. Tasisulam sodium, an antitumor agent that inhibits mitotic progression and induces vascular normalization. Mol Cancer Ther 2011; 10: 2168-2178. http://dx.doi.org/10.1158/1535-7163.MCT-11-0323
Borghaei H, Smith MR, Campbell KS. Immunotherapy of cancer. Eur J Pharmacol 2009; 625: 41-54. http://dx.doi.org/10.1016/j.ejphar.2009.09.067
Baxevanis CN, Perez SA, Papamichail M. Cancer immunotherapy. Crit Rev Clin Lab Sci 2009; 46: 167-189. http://dx.doi.org/10.1080/10408360902937809
Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou W. Bone marrow and the control of immunity. Cell Mol Immunol 2012; 9: 11-19. http://dx.doi.org/10.1038/cmi.2011.47
Kiessling R, Klein E, Wigzell H. "Natural" Killer cells in the mouse. I. Cytotoxic cells with specificity for mouse moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 1975; 5: 112-117. http://dx.doi.org/10.1002/eji.1830050208
Geller MA, Cooley S, Judson PL, Ghebre R, Carson LF, Argenta PA, Jonson AL, Panoskaltsis-Mortari A, Curtsinger J, McKenna D, Dusenbery K, Bliss R, Downs LS, Miller JS. A phase ii study of allogeneic natural killer cell therapy to treat patients with recurrent ovarian and breast cancer. Cytotherapy 2011; 13: 98-107. http://dx.doi.org/10.3109/14653249.2010.515582
Kiessling R, Klein E, Pross H, Wigzell H: "Natural" Killer cells in the mouse. Ii. Cytotoxic cells with specificity for mouse moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 1975; 5: 117-121. http://dx.doi.org/10.1002/eji.1830050209
Herberman RB, Nunn ME, Holden HT, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. Ii. Characterization of effector cells. Int J Cancer 1975; 16: 230-239. http://dx.doi.org/10.1002/ijc.2910160205
Herberman RB, Nunn ME, Lavrin DH. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 1975; 16: 216-229. http://dx.doi.org/10.1002/ijc.2910160204
Trinchieri G: Biology of natural killer cells. Adv Immunol 1989; 47: 187-376. http://dx.doi.org/10.1016/S0065-2776(08)60664-1
Dvorak AM, Galli SJ, Marcum JA, Nabel G, der Simonian H, Goldin J, Monahan RA, Pyne K, Cantor H, Rosenberg RD, Dvorak HF. Cloned mouse cells with natural killer function and cloned suppressor t cells express ultrastructural and biochemical features not shared by cloned inducer t cells. J Exp Med 1983; 157: 843-861. http://dx.doi.org/10.1084/jem.157.3.843
Chambers WH, Vujanovic NL, DeLeo AB, Olszowy MW, Herberman RB, Hiserodt JC. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med 1989; 169: 1373-1389. http://dx.doi.org/10.1084/jem.169.4.1373
Ryan JC, Turck J, Niemi EC, Yokoyama WM, Seaman WE. Molecular cloning of the nk1.1 antigen, a member of the nkr-p1 family of natural killer cell activation molecules. J Immunol 1992; 149: 1631-1635.
Glas R, Franksson L, Une C, Eloranta ML, Ohlen C, Orn A, Karre K. Recruitment and activation of natural killer (nk) cells in vivo determined by the target cell phenotype. An adaptive component of nk cell-mediated responses. J Exp Med 2000; 191: 129-138. http://dx.doi.org/10.1084/jem.191.1.129
Karre K. Nk cells, mhc class i molecules and the missing self. Scand J Immunol 2002; 55: 221-228. http://dx.doi.org/10.1046/j.1365-3083.2002.01053.x
Ljunggren HG, Karre K: In search of the 'missing self': Mhc molecules and nk cell recognition. Immunol Today 1990; 11: 237-244. http://dx.doi.org/10.1016/0167-5699(90)90097-S
Murphy WJ, Parham P, Miller JS. Nk cells--from bench to clinic. Biol Blood Marrow Transplant 2012; 18: S2-7. http://dx.doi.org/10.1016/j.bbmt.2011.10.033
Karre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of h-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 1986; 319: 675-678. http://dx.doi.org/10.1038/319675a0
Hayakawa Y, Smyth MJ: Innate immune recognition and suppression of tumors. Adv Cancer Res 2006; 95: 293-322. http://dx.doi.org/10.1016/S0065-230X(06)95008-8
Kim S, Iizuka K, Aguila HL, Weissman IL, Yokoyama WM: In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci U S A 2000; 97: 2731-2736. http://dx.doi.org/10.1073/pnas.050588297
Smyth MJ, Hayakawa Y, Takeda K, Yagita H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2002; 2: 850-861. http://dx.doi.org/10.1038/nrc928
Wu J, Lanier LL: Natural killer cells and cancer. Adv Cancer Res 2003; 90: 127-156. http://dx.doi.org/10.1016/S0065-230X(03)90004-2
Trapani JA, Davis J, Sutton VR, Smyth MJ. Proapoptotic functions of cytotoxic lymphocyte granule constituents in vitro and in vivo. Curr Opin Immunol 2000; 12: 323-329. http://dx.doi.org/10.1016/S0952-7915(00)00094-7
Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in tnf-related apoptosis-inducing ligand-deficient mice. J Immunol 2002; 168: 1356-1361. http://dx.doi.org/10.4049/jimmunol.168.3.1356
Sutlu T, Alici E. Natural killer cell-based immunotherapy in cancer: Current insights and future prospects. J Intern Med 2009; 266: 154-181. http://dx.doi.org/10.1111/j.1365-2796.2009.02121.x
Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S: Functions of natural killer cells. Nat Immunol 2008; 9: 503-510. http://dx.doi.org/10.1038/ni1582
Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006; 214: 73-91. http://dx.doi.org/10.1111/j.1600-065X.2006.00457.x
Bapsy PP, Sharan B, Kumar C, Das RP, Rangarajan B, Jain M, Suresh Attili VS, Subramanian S, Aggarwal S, Srivastava M, Vaid A. Open-label, multi-center, non-randomized, single-arm study to evaluate the safety and efficacy of dendritic cell immunotherapy in patients with refractory solid malignancies, on supportive care. Cytotherapy 2014; 16: 234-244. http://dx.doi.org/10.1016/j.jcyt.2013.11.013
Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F. Induced recruitment of nk cells to lymph nodes provides ifn-gamma for t(h)1 priming. Nat Immunol 2004; 5: 1260-1265. http://dx.doi.org/10.1038/ni1138
Mocikat R, Braumuller H, Gumy A, Egeter O, Ziegler H, Reusch U, Bubeck A, Louis J, Mailhammer R, Riethmuller G, Koszinowski U, Rocken M. Natural killer cells activated by mhc class i(low) targets prime dendritic cells to induce protective cd8 t cell responses. Immunity 2003; 19: 561-569. http://dx.doi.org/10.1016/S1074-7613(03)00264-4
Rader RA. (re)defining biopharmaceutical. Nat Biotechnol 2008; 26: 743-751. http://dx.doi.org/10.1038/nbt0708-743
Waldhauer I, Steinle A. Nk cells and cancer immunosurveillance. Oncogene 2008; 27: 5932-5943. http://dx.doi.org/10.1038/onc.2008.267
Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia. Leukemia 2012; 26: 2019-2026. http://dx.doi.org/10.1038/leu.2012.87
Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2: 293-299. http://dx.doi.org/10.1038/86297
Robinson BW, Morstyn G. Natural killer (nk)-resistant human lung cancer cells are lysed by recombinant interleukin-2-activated nk cells. Cell Immunol 1987; 106: 215-222. http://dx.doi.org/10.1016/0008-8749(87)90165-1
Lotzova E, Savary CA, Herberman RB. Induction of nk cell activity against fresh human leukemia in culture with interleukin 2. J Immunol 1987; 138: 2718-2727.
Lotzova E, Savary CA, Herberman RB: Inhibition of clonogenic growth of fresh leukemia cells by unstimulated and il-2 stimulated nk cells of normal donors. Leuk Res 1987; 11: 1059-1066. http://dx.doi.org/10.1016/0145-2126(87)90158-5
Bubenik J, Perlmann P, Indrova M, Simova J, Jandlova T, Neuwirt J. Growth inhibition of an mc-induced mouse sarcoma by tcgf (il 2)-containing preparations. Preliminary report. Cancer Immunol Immunother 1983; 14: 205-206. http://dx.doi.org/10.1007/BF00205362
Lafreniere R, Rosenberg SA. Successful immunotherapy of murine experimental hepatic metastases with lymphokine-activated killer cells and recombinant interleukin 2. Cancer Res 1985; 45: 3735-3741.
Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 1985; 161: 1169-1188. http://dx.doi.org/10.1084/jem.161.5.1169
Maekawa R, Matsumoto M, Kitagawa T, Harada M, Sato K. Effect of recombinant interleukin 2 (r-il2) on in vivo growth of murine myeloma x5563. Cancer Immunol Immunother 1986; 23: 25-30. http://dx.doi.org/10.1007/bf00205551
Thompson JA, Peace DJ, Klarnet JP, Kern DE, Greenberg PD, Cheever MA. Eradication of disseminated murine leukemia by treatment with high-dose interleukin 2. J Immunol 1986; 137: 3675-3680.
Vaage J. Local and systemic effects during interleukin-2 therapy of mouse mammary tumors. Cancer Res 1987; 47: 4296-4298.
Rutten VP, Klein WR, De Jong WA, Misdorp W, Den Otter W, Steerenberg PA, De Jong WH, Ruitenberg EJ. Local interleukin-2 therapy in bovine ocular squamous cell carcinoma. A pilot study. Cancer Immunol Immunother 1989; 30: 165-169. http://dx.doi.org/10.1007/BF01669425
Maas RA, Van Weering DH, Dullens HF, Den Otter W. Intratumoral low-dose interleukin-2 induces rejection of distant solid tumour. Cancer Immunol Immunother 1991; 33: 389-394. http://dx.doi.org/10.1007/BF01741599
Den Otter W, Maas RA, Koten JW, Dullens HF, Bernsen M, Klein WR, Rutten VP, Steerenberg PA, Balemans L, Ruitenberg EJ, et al. Effective immunotherapy with local low doses of interleukin-2. In vivo 1991; 5: 561-565.
Alici E, Konstantinidis KV, Sutlu T, Aints A, Gahrton G, Ljunggren HG, Dilber MS. Anti-myeloma activity of endogenous and adoptively transferred activated natural killer cells in experimental multiple myeloma model. Exp Hematol 2007; 35: 1839-1846. http://dx.doi.org/10.1016/j.exphem.2007.08.006
Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, et al. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 1987; 316: 889-897. http://dx.doi.org/10.1056/NEJM198704093161501
Rosenberg SA, Lotze MT, Muul LM, Leitman S, Chang AE, Ettinghausen SE, Matory YL, Skibber JM, Shiloni E, Vetto JT, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N Engl J Med 1985; 313: 1485-1492. http://dx.doi.org/10.1056/NEJM198512053132327
Phillips JH, Gemlo BT, Myers WW, Rayner AA, Lanier LL. In vivo and in vitro activation of natural killer cells in advanced cancer patients undergoing combined recombinant interleukin-2 and lak cell therapy. J Clin Oncol 1987; 5: 1933-1941.
Gratama JW, Bruin RJ, Lamers CH, Oosterom R, Braakman E, Stoter G, Bolhuis RL. Activation of the immune system of cancer patients by continuous i.V. Recombinant il-2 (ril-2) therapy is dependent on dose and schedule of ril-2. Clin Exp Immunol 1993; 92: 185-193. http://dx.doi.org/10.1111/j.1365-2249.1993.tb03378.x
Margolin K. Cytokine therapy in cancer. Expert Opin Biol Ther 2008; 8: 1495-1505. http://dx.doi.org/10.1517/14712598.8.10.1495
Belldegrun A, Tso CL, Kaboo R, Pang S, Pierce W, deKernion JB, Figlin R. Natural immune reactivity-associated therapeutic response in patients with metastatic renal cell carcinoma receiving tumor-infiltrating lymphocytes and interleukin-2-based therapy. J Immunother Emphasis Tumor Immunol 1996; 19: 149-161. http://dx.doi.org/10.1097/00002371-199603000-00008
Miller JS, Tessmer-Tuck J, Pierson BA, Weisdorf D, McGlave P, Blazar BR, Katsanis E, Verfaillie C, Lebkowski J, Radford J, Jr., Burns LJ: Low dose subcutaneous interleukin-2 after autologous transplantation generates sustained in vivo natural killer cell activity. Biol Blood Marrow Transplant 1997; 3: 34-44.
Burns LJ, Weisdorf DJ, DeFor TE, Vesole DH, Repka TL, Blazar BR, Burger SR, Panoskaltsis-Mortari A, Keever-Taylor CA, Zhang MJ, Miller JS. Il-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release: A phase i/ii trial. Bone Marrow Transplant 2003; 32: 177-186. http://dx.doi.org/10.1038/sj.bmt.1704086
Kalwak K, Ussowicz M, Gorczynska E, Turkiewicz D, Toporski J, Dobaczewski G, Latos-Grazynska E, Ryczan R, Noworolska-Sauren D, Chybicka A. Immunologic effects of intermediate-dose il-2 i.V. After autologous hematopoietic cell transplantation in pediatric solid tumors. J Interferon Cytokine Res 2003; 23: 173-181. http://dx.doi.org/10.1089/107999003765027375
Gottlieb DJ, Prentice HG, Mehta AB, Galazka AR, Heslop HE, Hoffbrand AV, Brenner MK. Malignant plasma cells are sensitive to lak cell lysis: Pre-clinical and clinical studies of interleukin 2 in the treatment of multiple myeloma. Br J Haematol 1990; 75: 499-505. http://dx.doi.org/10.1111/j.1365-2141.1990.tb07789.x
Seidel MG, Freissmuth M, Pehamberger H, Micksche M. Stimulation of natural killer activity in peripheral blood lymphocytes of healthy donors and melanoma patients in vitro: Synergism between interleukin (il)-12 and il-15 or il-12 and il-2. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 382-389. http://dx.doi.org/10.1007/PL00005268
DeBlaker-Hohe DF, Yamauchi A, Yu CR, Horvath-Arcidiacono JA, Bloom ET. Il-12 synergizes with il-2 to induce lymphokine-activated cytotoxicity and perforin and granzyme gene expression in fresh human nk cells. Cell Immunol 1995; 165: 33-43. http://dx.doi.org/10.1006/cimm.1995.1184
Boiardi A, Silvani A, Ruffini PA, Rivoltini L, Parmiani G, Broggi G, Salmaggi A. Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (a-lak) in recurrent glioblastoma patients. Cancer Immunol Immunother 1994; 39: 193-197. http://dx.doi.org/10.1007/BF01533386
Hayes RL, Koslow M, Hiesiger EM, Hymes KB, Hochster HS, Moore EJ, Pierz DM, Chen DK, Budzilovich GN, Ransohoff J. Improved long term survival after intracavitary interleukin-2 and lymphokine-activated killer cells for adults with recurrent malignant glioma. Cancer 1995; 76: 840-852. http://dx.doi.org/10.1002/1097-0142(19950901)76:5<840::AID-CNCR2820760519>3.0.CO;2-R
Keilholz U, Scheibenbogen C, Brado M, Georgi P, Maclachlan D, Brado B, Hunstein W. Regional adoptive immunotherapy with interleukin-2 and lymphokine-activated killer (lak) cells for liver metastases. Eur J Cancer 1994; 30A: 103-105. http://dx.doi.org/10.1016/S0959-8049(05)80028-0
Smetak M, Kimmel B, Birkmann J, Schaefer-Eckart K, Einsele H, Wilhelm M, Kunzmann V. Clinical-scale single-step cd4(+) and cd8(+) cell depletion for donor innate lymphocyte infusion (dili). Bone Marrow Transplant 2008; 41: 643-650. http://dx.doi.org/10.1038/sj.bmt.1705942
Leung W, Iyengar R, Leimig T, Holladay MS, Houston J, Handgretinger R. Phenotype and function of human natural killer cells purified by using a clinical-scale immunomagnetic method. Cancer Immunol Immunother 2005; 54: 389-394. http://dx.doi.org/10.1007/s00262-004-0609-6
Iyengar R, Handgretinger R, Babarin-Dorner A, Leimig T, Otto M, Geiger TL, Holladay MS, Houston J, Leung W. Purification of human natural killer cells using a clinical-scale immunomagnetic method. Cytotherapy 2003; 5: 479-484. http://dx.doi.org/10.1080/14653240310003558
Passweg JR, Tichelli A, Meyer-Monard S, Heim D, Stern M, Kuhne T, Favre G, Gratwohl A. Purified donor nk-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia 2004; 18: 1835-1838. http://dx.doi.org/10.1038/sj.leu.2403524
Lang P, Pfeiffer M, Handgretinger R, Schumm M, Demirdelen B, Stanojevic S, Klingebiel T, Kohl U, Kuci S, Niethammer D. Clinical scale isolation of t cell-depleted cd56+ donor lymphocytes in children. Bone Marrow Transplant 2002; 29: 497-502. http://dx.doi.org/10.1038/sj.bmt.1703406
McKenna DH, Jr., Sumstad D, Bostrom N, Kadidlo DM, Fautsch S, McNearney S, Dewaard R, McGlave PB, Weisdorf DJ, Wagner JE, McCullough J, Miller JS. Good manufacturing practices production of natural killer cells for immunotherapy: A six-year single-institution experience. Transfusion 2007; 47: 520-528. http://dx.doi.org/10.1111/j.1537-2995.2006.01145.x
Koehl U, Esser R, Zimmermann S, Tonn T, Kotchetkov R, Bartling T, Sorensen J, Gruttner HP, Bader P, Seifried E, Martin H, Lang P, Passweg JR, Klingebiel T, Schwabe D. Ex vivo expansion of highly purified nk cells for immunotherapy after haploidentical stem cell transplantation in children. Klin Padiatr 2005; 217: 345-350. http://dx.doi.org/10.1055/s-2005-872520
Torelli GF, Guarini A, Palmieri G, Breccia M, Vitale A, Santoni A, Foa R: Expansion of cytotoxic effectors with lytic activity against autologous blasts from acute myeloid leukaemia patients in complete haematological remission. Br J Haematol 2002; 116: 299-307. http://dx.doi.org/10.1046/j.1365-2141.2002.03277.x
Escudier B, Farace F, Angevin E, Charpentier F, Nitenberg G, Triebel F, Hercend T. Immunotherapy with interleukin-2 (il2) and lymphokine-activated natural killer cells: Improvement of clinical responses in metastatic renal cell carcinoma patients previously treated with il2. Eur J Cancer 1994; 30A: 1078-1083. http://dx.doi.org/10.1016/0959-8049(94)90460-X
Hercend T, Farace F, Baume D, Charpentier F, Droz JP, Triebel F, Escudier B. Immunotherapy with lymphokine-activated natural killer cells and recombinant interleukin-2: A feasibility trial in metastatic renal cell carcinoma. J Biol Response Mod 1990; 9: 546-555.
Miller JS, Klingsporn S, Lund J, Perry EH, Verfaillie C, McGlave P. Large scale ex vivo expansion and activation of human natural killer cells for autologous therapy. Bone Marrow Transplant 1994; 14: 555-562.
Lister J, Rybka WB, Donnenberg AD, deMagalhaes-Silverman M, Pincus SM, Bloom EJ, Elder EM, Ball ED, Whiteside TL. Autologous peripheral blood stem cell transplantation and adoptive immunotherapy with activated natural killer cells in the immediate posttransplant period. Clin Cancer Res 1995; 1: 607-614.
Pierson BA, Europa AF, Hu WS, Miller JS. Production of human natural killer cells for adoptive immunotherapy using a computer-controlled stirred-tank bioreactor. J Hematother 1996; 5: 475-483. http://dx.doi.org/10.1089/scd.1.1996.5.475
Carlens S, Gilljam M, Chambers BJ, Aschan J, Guven H, Ljunggren HG, Christensson B, Dilber MS. A new method for in vitro expansion of cytotoxic human cd3-cd56+ natural killer cells. Hum Immunol 2001; 62: 1092-1098. http://dx.doi.org/10.1016/S0198-8859(01)00313-5
Luhm J, Brand JM, Koritke P, Hoppner M, Kirchner H, Frohn C. Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res 2002; 11: 651-657. http://dx.doi.org/10.1089/15258160260194794
Guven H, Gilljam M, Chambers BJ, Ljunggren HG, Christensson B, Kimby E, Dilber MS. Expansion of natural killer (nk) and natural killer-like t (nkt)-cell populations derived from patients with b-chronic lymphocytic leukemia (b-cll): A potential source for cellular immunotherapy. Leukemia 2003; 17: 1973-1980. http://dx.doi.org/10.1038/sj.leu.2403083
Klingemann HG, Martinson J. Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy 2004; 6: 15-22. http://dx.doi.org/10.1080/14653240310004548
Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, Ohno T. Autologous natural killer cell therapy for human recurrent malignant glioma. Anticancer Res 2004; 24: 1861-1871.
Berg M, Lundqvist A, McCoy P, Jr., Samsel L, Fan Y, Tawab A, Childs R. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy 2009; 11: 341-355. http://dx.doi.org/10.1080/14653240902807034
Fujisaki H, Kakuda H, Shimasaki N, Imai C, Ma J, Lockey T, Eldridge P, Leung WH, Campana D. Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res 2009; 69: 4010-4017. http://dx.doi.org/10.1158/0008-5472.CAN-08-3712
Torelli GF, Guarini A, Maggio R, Alfieri C, Vitale A, Foa R. Expansion of natural killer cells with lytic activity against autologous blasts from adult and pediatric acute lymphoid leukemia patients in complete hematologic remission. Haematologica 2005; 90: 785-792.
Basse PH, Whiteside TL, Herberman RB. Cancer immunotherapy with interleukin-2-activated natural killer cells. Mol Biotechnol 2002; 21: 161-170. http://dx.doi.org/10.1385/MB:21:2:161
Siegler U, Kalberer CP, Nowbakht P, Sendelov S, Meyer-Monard S, Wodnar-Filipowicz A. Activated natural killer cells from patients with acute myeloid leukemia are cytotoxic against autologous leukemic blasts in nod/scid mice. Leukemia 2005; 19: 2215-2222. http://dx.doi.org/10.1038/sj.leu.2403985
deMagalhaes-Silverman M, Donnenberg A, Lembersky B, Elder E, Lister J, Rybka W, Whiteside T, Ball E. Posttransplant adoptive immunotherapy with activated natural killer cells in patients with metastatic breast cancer. J Immunother 2000; 23: 154-160. http://dx.doi.org/10.1097/00002371-200001000-00018
Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G, Pfister K, Multhoff G. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: A clinical phase i trial. Clin Cancer Res 2004; 10: 3699-3707. http://dx.doi.org/10.1158/1078-0432.CCR-03-0683
Milani V, Stangl S, Issels R, Gehrmann M, Wagner B, Hube K, Mayr D, Hiddemann W, Molls M, Multhoff G. Anti-tumor activity of patient-derived nk cells after cell-based immunotherapy--a case report. J Transl Med 2009; 7: 50. http://dx.doi.org/10.1186/1479-5876-7-50
Ruggeri L, Mancusi A, Capanni M, Martelli MF, Velardi A. Exploitation of alloreactive nk cells in adoptive immunotherapy of cancer. Curr Opin Immunol 2005; 17: 211-217. http://dx.doi.org/10.1016/j.coi.2005.01.007
Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, Posati S, Rogaia D, Frassoni F, Aversa F, Martelli MF, Velardi A. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 2002; 295: 2097-2100. http://dx.doi.org/10.1126/science.1068440
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, McKenna D, Le C, Defor TE, Burns LJ, Orchard PJ, Blazar BR, Wagner JE, Slungaard A, Weisdorf DJ, Okazaki IJ, McGlave PB: Successful adoptive transfer and in vivo expansion of human haploidentical nk cells in patients with cancer. Blood 2005; 105: 3051-3057. http://dx.doi.org/10.1182/blood-2004-07-2974
Ruggeri L, Mancusi A, Burchielli E, Aversa F, Martelli MF, Velardi A. Natural killer cell alloreactivity and haplo-identical hematopoietic transplantation. Cytotherapy 2006; 8: 554-558. http://dx.doi.org/10.1080/14653240601078721
Igarashi T, Wynberg J, Srinivasan R, Becknell B, McCoy JP, Jr., Takahashi Y, Suffredini DA, Linehan WM, Caligiuri MA, Childs RW. Enhanced cytotoxicity of allogeneic nk cells with killer immunoglobulin-like receptor ligand incompatibility against melanoma and renal cell carcinoma cells. Blood 2004; 104: 170-177. http://dx.doi.org/10.1182/blood-2003-12-4438
Koehl U, Sorensen J, Esser R, Zimmermann S, Gruttner HP, Tonn T, Seidl C, Seifried E, Klingebiel T, Schwabe D. Il-2 activated nk cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis 2004; 33: 261-266. http://dx.doi.org/10.1016/j.bcmd.2004.08.013
Shi J, Tricot G, Szmania S, Rosen N, Garg TK, Malaviarachchi PA, Moreno A, Dupont B, Hsu KC, Baxter-Lowe LA, Cottler-Fox M, Shaughnessy JD, Jr., Barlogie B, van Rhee F. Infusion of haplo-identical killer immunoglobulin-like receptor ligand mismatched nk cells for relapsed myeloma in the setting of autologous stem cell transplantation. Br J Haematol 2008; 143: 641-653. http://dx.doi.org/10.1111/j.1365-2141.2008.07340.x
Barkholt L, Alici E, Conrad R, Sutlu T, Gilljam M, Stellan B, Christensson B, Guven H, Bjorkstrom NK, Soderdahl G, Cederlund K, Kimby E, Aschan J, Ringden O, Ljunggren HG, Dilber MS. Safety analysis of ex vivo-expanded nk and nk-like t cells administered to cancer patients: A phase i clinical study. Immunotherapy 2009; 1: 753-764. http://dx.doi.org/10.2217/imt.09.47
Huenecke S, Zimmermann SY, Kloess S, Esser R, Brinkmann A, Tramsen L, Koenig M, Erben S, Seidl C, Tonn T, Eggert A, Schramm A, Bader P, Klingebiel T, Lehrnbecher T, Passweg JR, Soerensen J, Schwabe D, Koehl U. Il-2-driven regulation of nk cell receptors with regard to the distribution of cd16+ and cd16- subpopulations and in vivo influence after haploidentical nk cell infusion. J Immunother 2010; 33: 200-210. http://dx.doi.org/10.1097/CJI.0b013e3181bb46f7
Rubnitz JE, Inaba H, Ribeiro RC, Pounds S, Rooney B, Bell T, Pui CH, Leung W. Nkaml: A pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J Clin Oncol 2010; 28: 955-959. http://dx.doi.org/10.1200/JCO.2009.24.4590
Rizzieri DA, Storms R, Chen DF, Long G, Yang Y, Nikcevich DA, Gasparetto C, Horwitz M, Chute J, Sullivan K, Hennig T, Misra D, Apple C, Baker M, Morris A, Green PG, Hasselblad V, Chao NJ. Natural killer cell-enriched donor lymphocyte infusions from a 3-6/6 hla matched family member following nonmyeloablative allogeneic stem cell transplantation. Biol Blood Marrow Transplant 2010; 16: 1107-1114. http://dx.doi.org/10.1016/j.bbmt.2010.02.018
Brehm C, Huenecke S, Quaiser A, Esser R, Bremm M, Kloess S, Soerensen J, Kreyenberg H, Seidl C, Becker PS, Muhl H, Klingebiel T, Bader P, Passweg JR, Schwabe D, Koehl U. Il-2 stimulated but not unstimulated nk cells induce selective disappearance of peripheral blood cells: Concomitant results to a phase i/ii study. PLoS One 2011; 6: e27351. http://dx.doi.org/10.1371/journal.pone.0027351
Nguyen S, Beziat V, Norol F, Uzunov M, Trebeden-Negre H, Azar N, Boudifa A, Bories D, Debre P, Vernant JP, Vieillard V, Dhedin N. Infusion of allogeneic natural killer cells in a patient with acute myeloid leukemia in relapse after haploidentical hematopoietic stem cell transplantation. Transfusion 2011; 51: 1769-1778. http://dx.doi.org/10.1111/j.1537-2995.2010.03058.x
Curti A, Ruggeri L, D'Addio A, Bontadini A, Dan E, Motta MR, Trabanelli S, Giudice V, Urbani E, Martinelli G, Paolini S, Fruet F, Isidori A, Parisi S, Bandini G, Baccarani M, Velardi A, Lemoli RM. Successful transfer of alloreactive haploidentical kir ligand-mismatched natural killer cells after infusion in elderly high risk acute myeloid leukemia patients. Blood 2011; 118: 3273-3279. http://dx.doi.org/10.1182/blood-2011-01-329508
Maki G, Klingemann HG, Martinson JA, Tam YK. Factors regulating the cytotoxic activity of the human natural killer cell line, nk-92. J Hematother Stem Cell Res 2001; 10: 369-383. http://dx.doi.org/10.1089/152581601750288975
Yan Y, Steinherz P, Klingemann HG, Dennig D, Childs BH, McGuirk J, O'Reilly RJ. Antileukemia activity of a natural killer cell line against human leukemias. Clin Cancer Res 1998; 4: 2859-2868.
Tam YK, Miyagawa B, Ho VC, Klingemann HG. Immunotherapy of malignant melanoma in a scid mouse model using the highly cytotoxic natural killer cell line nk-92. J Hematother 1999; 8: 281-290. http://dx.doi.org/10.1089/106161299320316
Tonn T, Becker S, Esser R, Schwabe D, Seifried E. Cellular immunotherapy of malignancies using the clonal natural killer cell line nk-92. J Hematother Stem Cell Res 2001; 10: 535-544. http://dx.doi.org/10.1089/15258160152509145
Arai S, Meagher R, Swearingen M, Myint H, Rich E, Martinson J, Klingemann H. Infusion of the allogeneic cell line nk-92 in patients with advanced renal cell cancer or melanoma: A phase i trial. Cytotherapy 2008; 10: 625-632. http://dx.doi.org/10.1080/14653240802301872
Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, Shearer G, Chang L, Chiang Y, Tolstoshev P, Greenblatt JJ, Rosenberg SA, Klein H, Berger M, Mullen CA, Ramsey WJ, Muul L, Morgan RA, Anderson WF. T lymphocyte-directed gene therapy for ada- scid: Initial trial results after 4 years. Science 1995; 270: 475-480. http://dx.doi.org/10.1126/science.270.5235.475
Rosenberg SA, Aebersold P, Cornetta K, Kasid A, Morgan RA, Moen R, Karson EM, Lotze MT, Yang JC, Topalian SL, et al. Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323: 570-578. http://dx.doi.org/10.1056/NEJM199008303230904
Rogers S, Pfuderer P. Use of viruses as carriers of added genetic information. Nature 1968; 219: 749-751. http://dx.doi.org/10.1038/219749a0
Pathak A, Patnaik S, Gupta KC: Recent trends in non-viral vector-mediated gene delivery. Biotechnol J 2009; 4: 1559-1572. http://dx.doi.org/10.1002/biot.200900161
Li SD, Huang L. Gene therapy progress and prospects: Non-viral gene therapy by systemic delivery. Gene Ther 2006; 13: 1313-1319. http://dx.doi.org/10.1038/sj.gt.3302838
Trobridge G, Josephson N, Vassilopoulos G, Mac J, Russell DW. Improved foamy virus vectors with minimal viral sequences. Mol Ther 2002; 6: 321-328. http://dx.doi.org/10.1006/mthe.2002.0672
Heinkelein M, Dressler M, Jarmy G, Rammling M, Imrich H, Thurow J, Lindemann D, Rethwilm A. Improved primate foamy virus vectors and packaging constructs. J Virol 2002; 76: 3774-3783. http://dx.doi.org/10.1128/JVI.76.8.3774-3783.2002
Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM, Vogel AN, Kalos M, Riley JL, Deeks SG, Mitsuyasu RT, Bernstein WB, Aronson NE, Levine BL, Bushman FD, June CH. Decade-long safety and function of retroviral-modified chimeric antigen receptor t cells. Sci Transl Med 2012; 4: 132ra153. http://dx.doi.org/10.1126/scitranslmed.3003761
Biffi A, Bartolomae CC, Cesana D, Cartier N, Aubourg P, Ranzani M, Cesani M, Benedicenti F, Plati T, Rubagotti E, Merella S, Capotondo A, Sgualdino J, Zanetti G, von Kalle C, Schmidt M, Naldini L, Montini E. Lentiviral vector common integration sites in preclinical models and a clinical trial reflect a benign integration bias and not oncogenic selection. Blood 2011; 117: 5332-5339. http://dx.doi.org/10.1182/blood-2010-09-306761
Grund EM, Muise-Helmericks RC. Cost efficient and effective gene transfer into the human natural killer cell line, nk92. J Immunol Methods 2005; 296: 31-36. http://dx.doi.org/10.1016/j.jim.2004.10.008
Nagashima S, Mailliard R, Kashii Y, Reichert TE, Herberman RB, Robbins P, Whiteside TL. Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo. Blood 1998; 91: 3850-3861.
Becknell B, Trotta R, Yu J, Ding W, Mao HC, Hughes T, Marburger T, Caligiuri MA. Efficient infection of human natural killer cells with an ebv/retroviral hybrid vector. J Immunol Methods 2005; 296: 115-123. http://dx.doi.org/10.1016/j.jim.2004.11.012
Guven H, Konstantinidis KV, Alici E, Aints A, Abedi-Valugerdi M, Christensson B, Ljunggren HG, Dilber MS. Efficient gene transfer into primary human natural killer cells by retroviral transduction. Exp Hematol 2005; 33: 1320-1328. http://dx.doi.org/10.1016/j.exphem.2005.07.006
Alici E, Sutlu T, Sirac Dilber M. Retroviral gene transfer into primary human natural killer cells. Methods Mol Biol 2009; 506: 127-137. http://dx.doi.org/10.1007/978-1-59745-409-4_10
Uherek C, Tonn T, Uherek B, Becker S, Schnierle B, Klingemann HG, Wels W. Retargeting of natural killer-cell cytolytic activity to erbb2-expressing cancer cells results in efficient and selective tumor cell destruction. Blood 2002; 100: 1265-1273.
Konstantinidis KV, Alici E, Aints A, Christensson B, Ljunggren HG, Dilber MS. Targeting il-2 to the endoplasmic reticulum confines autocrine growth stimulation to nk-92 cells. Exp Hematol 2005; 33: 159-164. http://dx.doi.org/10.1016/j.exphem.2004.11.003
Tran J, Kung SK. Lentiviral vectors mediate stable and efficient gene delivery into primary murine natural killer cells. Mol Ther 2007; 15: 1331-1339. http://dx.doi.org/10.1038/sj.mt.6300184
Baeriswyl V, Wodnar-Filipowicz A, Kalberer CP. The effect of silencing nkg2d through rna interference on receptor functions in interleukin-2-activated human natural killer cells. Haematologica 2006; 91: 1538-1541.
Figueiredo C, Seltsam A, Blasczyk R. Permanent silencing of nkg2a expression for cell-based therapeutics. J Mol Med (Berl) 2009; 87: 199-210. http://dx.doi.org/10.1007/s00109-008-0417-0
Karimi M, Cao TM, Baker JA, Verneris MR, Soares L, Negrin RS. Silencing human nkg2d, dap10, and dap12 reduces cytotoxicity of activated cd8+ t cells and nk cells. J Immunol 2005; 175: 7819-7828. http://dx.doi.org/10.4049/jimmunol.175.12.7819
Kung SK. Introduction of shrnas into primary nk cells with lentivirus. Methods Mol Biol 2010; 612: 233-247. http://dx.doi.org/10.1007/978-1-60761-362-6_16
Micucci F, Zingoni A, Piccoli M, Frati L, Santoni A, Galandrini R: High-efficient lentiviral vector-mediated gene transfer into primary human nk cells. Exp Hematol 2006; 34: 1344-1352. http://dx.doi.org/10.1016/j.exphem.2006.06.001
Tran J, Mahmood S, Carlyle JR, Kung SK. Altering the specificity of nk: Target cell interactions by genetic manipulation of nk receptor expression on primary mouse nk cells. Vaccine 2010; 28: 3767-3772. http://dx.doi.org/10.1016/j.vaccine.2010.03.013
Schoenberg K, Trompeter HI, Uhrberg M. Delivery of DNA into natural killer cells for immunotherapy. Methods Mol Biol 2008; 423: 165-172. http://dx.doi.org/10.1007/978-1-59745-194-9_11
Boissel L, Betancur M, Wels WS, Tuncer H, Klingemann H. Transfection with mrna for cd19 specific chimeric antigen receptor restores nk cell mediated killing of cll cells. Leuk Res 2009; 33: 1255-1259. http://dx.doi.org/10.1016/j.leukres.2008.11.024
Trompeter HI, Weinhold S, Thiel C, Wernet P, Uhrberg M. Rapid and highly efficient gene transfer into natural killer cells by nucleofection. J Immunol Methods 2003; 274: 245-256. http://dx.doi.org/10.1016/S0022-1759(02)00431-3
Liu JH, Wei S, Blanchard DK, Djeu JY. Restoration of lytic function in a human natural killer cell line by gene transfection. Cell Immunol 1994; 156: 24-35. http://dx.doi.org/10.1006/cimm.1994.1150
Zhang J, Sun R, Wei H, Tian Z. Characterization of interleukin-15 gene-modified human natural killer cells: Implications for adoptive cellular immunotherapy. Haematologica 2004; 89: 338-347.
Jiang W, Zhang J, Tian Z. Functional characterization of interleukin-15 gene transduction into the human natural killer cell line nkl. Cytotherapy 2008; 10: 265-274. http://dx.doi.org/10.1080/14653240801965156
Goding SR, Yang Q, Knudsen KB, Potter DM, Basse PH. Cytokine gene therapy using adenovirally transduced, tumor-seeking activated natural killer cells. Hum Gene Ther 2007; 18: 701-711. http://dx.doi.org/10.1089/hum.2007.052
Roychowdhury S, Blaser BW, Freud AG, Katz K, Bhatt D, Ferketich AK, Bergdall V, Kusewitt D, Baiocchi RA, Caligiuri MA. Il-15 but not il-2 rapidly induces lethal xenogeneic graft-versus-host disease. Blood 2005; 106: 2433-2435. http://dx.doi.org/10.1182/blood-2005-04-1597
Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on il-2. Nat Rev Immunol 2004; 4: 665-674. http://dx.doi.org/10.1038/nri1435
Maas RA, Dullens HF, Den Otter W. Interleukin-2 in cancer treatment: Disappointing or (still) promising? A review. Cancer Immunol Immunother 1993; 36: 141-148. http://dx.doi.org/10.1007/BF01741084
Ardizzoni A, Bonavia M, Viale M, Baldini E, Mereu C, Verna A, Ferrini S, Cinquegrana A, Molinari S, Mariani GL, et al. Biologic and clinical effects of continuous infusion interleukin-2 in patients with non-small cell lung cancer. Cancer 1994; 73: 1353-1360. http://dx.doi.org/10.1002/1097-0142(19940301)73:5<1353::AID-CNCR2820730508>3.0.CO;2-H
Tam YK, Maki G, Miyagawa B, Hennemann B, Tonn T, Klingemann HG. Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy. Hum Gene Ther 1999; 10: 1359-1373. http://dx.doi.org/10.1089/10430349950018030
Miller JS, Tessmer-Tuck J, Blake N, Lund J, Scott A, Blazar BR, Orchard PJ. Endogenous il-2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral-mediated gene transfer. Exp Hematol 1997; 25: 1140-1148.
Schirrmann T, Pecher G. Human natural killer cell line modified with a chimeric immunoglobulin t-cell receptor gene leads to tumor growth inhibition in vivo. Cancer Gene Ther 2002; 9: 390-398. http://dx.doi.org/10.1038/sj.cgt.7700453
Schirrmann T, Pecher G. Specific targeting of cd33(+) leukemia cells by a natural killer cell line modified with a chimeric receptor. Leuk Res 2005; 29: 301-306. http://dx.doi.org/10.1016/j.leukres.2004.07.005
Demirtzoglou FJ, Papadopoulos S, Zografos G. Cytolytic and cytotoxic activity of a human natural killer cell line genetically modified to specifically recognize her-2/neu overexpressing tumor cells. Immunopharmacol Immunotoxicol 2006; 28: 571-590. http://dx.doi.org/10.1080/08923970601066971
Meier R, Piert M, Piontek G, Rudelius M, Oostendorp RA, Senekowitsch-Schmidtke R, Henning TD, Wels WS, Uherek C, Rummeny EJ, Daldrup-Link HE. Tracking of [18f]fdg-labeled natural killer cells to her2/neu-positive tumors. Nucl Med Biol 2008; 35: 579-588. http://dx.doi.org/10.1016/j.nucmedbio.2008.02.006
Pegram HJ, Jackson JT, Smyth MJ, Kershaw MH, Darcy PK. Adoptive transfer of gene-modified primary nk cells can specifically inhibit tumor progression in vivo. J Immunol 2008; 181: 3449-3455. http://dx.doi.org/10.4049/jimmunol.181.5.3449
Kruschinski A, Moosmann A, Poschke I, Norell H, Chmielewski M, Seliger B, Kiessling R, Blankenstein T, Abken H, Charo J. Engineering antigen-specific primary human nk cells against her-2 positive carcinomas. Proc Natl Acad Sci U S A 2008; 105: 17481-17486. http://dx.doi.org/10.1073/pnas.0804788105
Imai C, Iwamoto S, Campana D. Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 2005; 106: 376-383. http://dx.doi.org/10.1182/blood-2004-12-4797
Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, Zeng T, Huang H, Zhang X, Sun W, Man-Yuen Sze D, Yi Q, Hou J. Transfection of chimeric anti-cd138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol Oncol 2013; 8: 297-310. http://dx.doi.org/10.1016/j.molonc.2013.12.001
Downloads
Published
Issue
Section
License
Policy for Journals/Articles with Open Access
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work
Policy for Journals / Manuscript with Paid Access
Authors who publish with this journal agree to the following terms:- Publisher retain copyright .
- Authors are permitted and encouraged to post links to their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work .