International Journal of Membrane Science and Technology  (Volume 8 Issue 2)
Effect of Photoconductivity Precursor Volume on Structural, Physical, Electrical and Optical Properties of Thin Layers of Cadmium Oxide (CdO) Nanostructures Produced Using Spray Pyrolysis Technique International Journal of Membrane Science and Technology
Pages 40-53

Alireza Heidari


Published: 09 December  2021
Thin layers of Cadmium Oxide (CdO) are produced over glassy substrate by spray pyrolysis technique with precursor volumes of 50, 75 and 100 (ml). FESEM images of samples show the formation of nanometric structures and structural characterization of them resulted from XRD spectroscopy indicate the formation of cubic polycrystalline structure in growing layers with preferred direction of (111). Evaluating the optical properties of samples show that optical band gap of layers is reduced from 3.6 to 3.4 (eV) by increasing the precursor volume and the optical absorption coefficient of samples is in UV region at about 105 (cm-1). Data analysis indicates that the produced sample in volume of 100 mL has the smallest penetration depth (smaller than 200 nm) in UV region. On the other hand, thin layers of Cadmium Oxide (CdO) with various volumes of Cadmium acetate solution (40, 50 and 70 ml) were deposited using spray pyrolysis technique over a glassy substrate. Samples were investigated using FESEM images, XRD and UV-Vis spectra as well as I-V characteristic. It was found that all samples were grew up with polycrystalline nanostructures along the preferred direction of (002). In addition, it was found that grew up sample in the volume of 50 (ml) are of optimum photoconductivity condition in visible range regarding optimum structural (largest crystallite size and lowest crystallite defect density) and optical (smallest band gap and highest light absorption) conditions.
Cadmium Oxide (CdO), Spray Pyrolysis Technique, Optical Properties, Penetration Depth, Photoconductivity, Nanostructures, Visible Light, Structural Properties, Physical Properties, Electrical Properties.

Indexed In

Scopus Logo